See how Denton Vacuum has pioneered thin film for 6 decades.

Making a Carbon-Free Future a Reality: Electrolyzers, Platinum, and Thin Film Deposition

PEM electrolysis diagram

Posted on

One device helping make the carbon-free future more of a reality is the electrolyzer. Hydrogen is emerging as an increasingly important fuel source, and electrolyzers use electricity to perform electrolysis – the process of dividing water molecules into their separate components of hydrogen gas and oxygen gas. The oxygen and hydrogen can then be compressed… Read More

How Can You Improve Factory Throughput in Thin Film Deposition?

Close up image of a silicon wafer

Posted on

Factory throughput in thin film deposition is one of the most critical factors affecting overall production performance. Whether you are manufacturing for high or low volume applications, you need to be able to meet production needs in the most cost-effective way possible, and scale into higher production when needed. Finding ways to raise your factory… Read More

4 Industry Applications for PIB-CVD

Posted on

In the world of thin film deposition, there are few techniques that have the versatility of PIB-CVD. Short for plasma ion beam assisted chemical vapor deposition, PIB-CVD is a cutting-edge thin film deposition process that can be used to deposit large area multifunctional thin films with greater efficiency as well as engineer new materials.  What… Read More

Versatile, Turnkey Solutions for Magnetron Sputtering

electronic-board

Posted on

Denton offers a number of magnetron configurations to meet different application requirements. Magnetron sputtering is a highly versatile thin film deposition technique for coating films with excellent adhesion and high density. Magnetron sputtering is a plasma-based coating process where a magnetically confined plasma is created near the surface of a target material. Positively charged energetic… Read More

The Benefits of Bias Target Sputtering

Posted on

Enabling Sputtering from the Target Only Bias Target Sputtering (BTS) has excellent process control and stoichiometry while reducing contamination and lowering cost of ownership. The ultralow contamination leads to higher performance in lasers and fewer defects enables higher laser damage threshold. BTS is also used for EUV mask blanks which must be defect-free or the… Read More

Denton Receives Patent for Linear Plasma Ion Source

A CAD drawing of Denton Vacuum's patented linear plasma-ion source.

Posted on

Denton Vacuum was recently assigned U.S. patent number 10,815,570 for a linearized energetic radio-frequency plasma ion source. This source is designed as a large area, filament-free source that is fully compatible with high-throughput, in-line sputtering systems. Some of the unique, patent-protected features of this source are: Plasma ion source with independent control over ion current… Read More

Optimizing Cost of Ownership for Precious Metal Coatings

Nuggets of gold on a black background

Posted on

Material transfer efficiency may not be the biggest concern for all coatings, but when using precious metals, it becomes a major factor in cost of ownership. For applications that require the use of precious metals to ensure performance, like metal contacts and superconducting tape, your thin film deposition system design will play a major role… Read More

Considerations for Using Magnetron Sputtering for Lift-Off Applications

lift off in magnetron sputtering diagram

Posted on

Thin film deposition methods such as evaporation for indium bump deposition are often ideal for achieving good lift-off for patterned coatings. However, evaporation techniques can fall short of production needs for high-volume manufacturing. High-volume applications often require magnetron sputtering as a deposition method. The challenge for these manufacturers is to achieve good lift-off while meeting… Read More

Horizontal vs. Vertical Orientation in Sputtering: Advantages and Drawbacks

Comparison showing a vertical Phoenix sputtering system configuration on top, and a horizontal Phoenix sputtering system configuration below.

Posted on

One design consideration that can affect your process and thin film coating performance is the collective orientation of the substrate and cathodes during magnetron sputtering. Your system configuration may be oriented either horizontally or vertically, and both orientations have their benefits and tradeoffs. Vertical Sputtering: Benefits In a vertical sputtering configuration, the substrate and cathodes… Read More

Benefits of Planar Cathode Placement During Sputtering

planar cathode

Posted on

One approach to cathode placement during sputtering is a planar configuration, in which the cathode is mounted directly above the substrate. This is the preferred method for applications where uniformity is paramount to performance. Benefits of Planar Cathode Placement When you mount the cathodes directly above the substrate during thin film deposition, you’ll achieve: Excellent… Read More